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ABSTRACT

Approximations to flow-dependent analysis-error covariance singular vectors (AEC SVs) were calculated in
a dry, T31 L15 primitive-equation global model. Sets of 400-member ensembles of analyses were generated by
an ensemble-based data assimilation system. A sparse network of simulated rawinsonde observations were
assimilated, and a perfect model was assumed. Ensembles of 48-h forecasts were also generated from these
analyses. The structure of evolved singular vectors was determined by finding the linear combination of the
forecast ensemble members that resulted in the largest forecast-error variance, here measured in a total-energy
norm north of 208N latitude. The same linear combination of analyses specifies the initial-time structure that
should evolve to the forecast singular vector under assumptions of linearity of error growth.

The structures of these AEC SVs are important because they represent the analysis-error structures associated
with the largest forecast errors. If singular vectors using other initial norms have very different structures, this
indicates that these structures may be statistically unlikely to occur. The European Centre for Medium-Range
Weather Forecasts currently uses singular vectors using an initial total-energy norm [‘‘total-energy singular
vectors’’ or (TE SVs)] to generate perturbations to initialize their ensemble forecasts. Approximate TE SVs were
also calculated by drawing an initial random ensemble with perturbations that were white in total energy and
applying the same approach as for AEC SVs. Comparing AEC SVs and approximate TE SVs, the AEC SVs
had maximum amplitude in midlatitudes near the tropopause, both at the initial and evolved times. The AEC
SVs were synoptic in scale, deep, and did not appear to be geographically localized nor tilted dramatically
upshear. This contrasts with TE SVs, which started off relatively smaller in scale, were tilted upshear, and had
amplitudes typically largest in the lower to midtroposphere.

The difference between AEC SVs and TE SVs suggests that operational ensemble forecasts based on TE SVs
could be improved by changing the type of singular vector used to generate initial perturbations. This is par-
ticularly true for short-range ensemble forecasts, where the structure of the forecast ensemble is more closely
tied to the analysis ensemble.

1. Introduction

Though ensemble forecasting has been operational in
the United States, Europe, and Canada for nearly a decade
now, no clear consensus has yet evolved on the best
practical method for generating initial conditions for
these ensemble forecasts. In principle, it is understood
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from the Liouville equation (e.g., Ehrendorfer 1994) that
the samples should be drawn from the probability dis-
tribution of analysis states, regardless of whether they
should be drawn randomly or nonrandomly. However,
this analysis-error probability distribution can be highly
dependent on the dynamics of the day and the observation
network and thus may be difficult to calculate. Analysis
errors may be quite small in the region of, say, an amply
observed blocking high but much larger in the region of
a sparsely observed storm track. A computationally ef-
ficient method for generating sets of initial conditions
that are fully consistent with flow-dependent analysis-
error statistics has yet to be demonstrated with an op-
erational weather forecast and data assimilation system.
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As a consequence, the various operational numerical
weather prediction centers have embraced different ap-
proaches to generate initial conditions for their ensemble
forecasts. The European Centre for Medium-Range
Weather Forecasts (ECMWF) have used ‘‘singular vec-
tor’’ perturbations (Molteni et al. 1996); the National
Centers for Environmental Prediction (NCEP) use a
‘‘breeding’’ method (Toth and Kalnay 1993, 1997); and
at the Canadian Meteorological Centre (CMC), a ‘‘per-
turbed-observation’’ statistical interpolation approach is
used (Houtekamer et al. 1996).

Understanding the relative merits of each approach
has proved difficult since each forecast center uses a
different forecast model, different data assimilation ap-
proaches, and even somewhat different sets of obser-
vations. Few comparisons have been performed to test
the different perturbation methods with the same anal-
ysis system, forecast model, and observations. Houtek-
amer and Derome (1995) compared the skill of the mean
forecasts from singular vector, bred, and perturbed ob-
servation ensembles using a T21 L3 quasigeostrophic
model. The authors found little difference in the skill
of ensemble mean forecasts produced by the three meth-
ods. Anderson (1996, 1997) provided some comparisons
of different approaches using the three-dimensional Lo-
renz (1963) model. Hamill et al. (2000) provided a com-
parison of singular vector, bred, and perturbed obser-
vation methods in a quasigeostrophic channel model
with O(105) degrees of freedom under perfect-model
assumptions. This comparison suggested that the per-
turbed observation method produced the most consistent
and skillful ensembles, especially at short forecast lead
times. Early on, there was a spread–skill relationship
for the perturbed-observation ensemble that did not exist
in the bred and singular vector ensembles.

Since all of the operational methods that are currently
utilized are approximations of various degrees, some
theoretical guidance on what ideally should be used
would be helpful. Under assumptions of linearity of
error growth and normality of errors, Ehrendorfer and
Tribbia (1997) demonstrate that forecast-error covari-
ances for a specified lead time can be predicted most
efficiently using an ensemble constructed in the sub-
space of the leading analysis-error covariance singular
vectors (AEC SVs). These are the structures that explain
the greatest forecast variance and whose initial size is
consistent with the analysis-error covariance statistics.

Because of the cost and difficulty of generating such
AEC SVs, ECMWF has used a surrogate approach.
Their ensemble of initial conditions is constructed to lie
in a subspace of the leading initial-time total-energy
singular vectors (TE SVs). Perturbations evolved from
these initial-time singular vectors are designed to max-
imize forecast error variance at 48 h measured in a total-
energy norm, subject to the constraint that the initial
size of the perturbation is fixed and again measured in
a total-energy norm. The structure of evolved SVs at
48 h and beyond is rather similar whatever the choice

of the initial norm (Barkmeijer et al. 1998, 1999), so
for medium-range forecasts, TE SVs are probably a rea-
sonable substitute for AEC SVs.

The structure of the initial-time TE SVs has been
documented in a wide variety of models, with similar-
ities more notable than the differences. From the Char-
ney model (Farrell 1989) to the Eady model (Mukogawa
and Ikeda 1994; Morgan 2001; Badger and Hoskins
2001) to low-resolution general circulation models
(Buizza et al. 1993) to higher-resolution models (Buizza
and Palmer 1995; Barkmeijer et al. 1998, 1999; Hoskins
et al. 2000; Reynolds et al. 2001), the optimally growing
structure typically is found in the midtroposphere, is
subsynoptic in scale, and is dramatically tilted upshear.
Though most share these features, the literature points
out a few exceptions; for example, Buizza and Palmer
(1995) and Reynolds et al. (2001) point out cases where
the initial-time TE SV associated with the subtropical
jet was maximized in amplitude near the tropopause.

Unfortunately, it seems possible that the initial-time
TE SVs may not resemble the AEC SVs, and thus the
TE SVs may have a relatively small expected projection
onto the subspace defining the analysis-error covari-
ances. For example, while TE SVs have largest ampli-
tude in the midtroposphere, studies such as Holling-
sworth and Lönnberg (1986) have shown that 6-h fore-
cast errors (and, thus, presumably analysis errors) are
largest near the tropopause and much smaller in the
midtroposphere.

Because of such discrepancies, Barkmeijer et al.
(1998, 1999) explored an alternative singular vector cal-
culation, known as ‘‘Hessian SVs.’’ The initial-time
Hessian SVs are consistent with the analysis-error sta-
tistics implied by the observational network and the
background-error covariances assumed in the three-di-
mensional variational assimilation scheme (3DVAR).
These error statistics are stationary except to the extent
that the observation network varies with time. In their
studies, they compared the structure of the initial per-
turbations and the accuracy of subsequent probabilistic
forecasts against those from TE SVs. The leading initial-
time Hessian SVs were larger in scale than correspond-
ing initial-time TE SVs, and their amplitude both at the
initial time and optimization time was largest near the
tropopause. Hessian SVs typically grew somewhat
slower than TE SVs. The Hessian SVs had smaller initial
amplitudes over data-rich continents and larger ampli-
tudes over the oceans, consistent with the analysis-error
statistics. Though the Hessian SVs had some desirable
characteristics, probabilistic forecasts from TE SVs
were found to be slightly more skillful. The exact rea-
sons for this were unclear; Barkmeijer et al. (1999) hy-
pothesized that perhaps the broad and deep correlation
functions in the background-error covariance model
used in 3DVAR unrealistically de-emphasized synoptic
and subsynoptic scales, and that with a more realistic
error covariance, the Hessian SV structures might more
closely resemble those from TE SVs. Gelaro et al.
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(2002) recently performed a study of singular vectors
using an analysis-error variance (not covariance) norm
and found structures that were somewhat more similar
to TE SVs than in the Barkmeijer et al. studies.

To date, no study has documented the structure of
flow-dependent AEC SVs. The emergence of ensemble-
based data assimilation methods (see, e.g., Evensen
1994; Houtekamer and Mitchell 1998, 2001; Burgers et
al. 1998; Mitchell and Houtekamer 2000; Hamill et al.
2001; Whitaker and Hamill 2002; Mitchell et al. 2002)
provides a vehicle for quantitatively exploring their ap-
proximate characteristics. These methods are based on
an ensemble of parallel data assimilation cycles. Back-
ground-error covariances used during the data assimi-
lation are modeled from the collection of ensemble fore-
casts. If care is taken to avoid filter divergence (see
Hamill et al. 2001, and references therein), this ensem-
ble of initial conditions should sample the distribution
of analysis errors. Using this ensemble, one can readily
approximate a few leading AEC SVs. This calculation
involves finding the forecast structures that account for
the most error variance in the space spanned by the
ensemble. Under the assumption of linear error evolu-
tion, the initial-time AEC SV is computed by applying
to the initial ensemble the same linear combination of
ensemble members that produced the forecast structure
with the largest variance. Attractively, this computation
can be done without use of the linear tangent and adjoint
versions of the forecast model.

A similar technique can be used to generate the ap-
proximate TE SVs. Following Hamill et al. (2000), we
will compute approximate TE SVs using a very large
(1600 member) ensemble of initial conditions composed
of the ensemble mean analysis plus random perturba-
tions consistent with an initial total-energy norm. A sin-
gular value decomposition of the resulting forecasts then
determines the forecast structures with the most variance
as well as the initial perturbations that will evolve into
those forecast structures.

This paper will focus on a description of the structure
of these AEC SVs and a comparison with TE SVs.
Though it is an important question for ensemble fore-
casting, we will not address in this paper the question
of the relative usefulness of random and singular vector
ensembles; we hope to address this in our future work.

The paper is organized as follows. Section 2 provides
a brief description of the forecast model and the ensem-
ble data assimilation methodology. Section 3 describes
the methodology for generating flow-dependent AEC
SVs and the approximate TE SVs. The details of our
experiment and test methodology are described in sec-
tion 4. Section 5 describes the characteristics of analysis
errors, while section 6 provides results, and section 7 a
discussion and conclusions.

2. Ensemble-based data assimilation methodology
a. Forecast model

A T31 L15 dry primitive equation spectral model will
be used in the following experiments. There are no ter-

rain features nor surface variations (however, in sub-
sequent plots we will superimpose maps of the earth’s
coastlines for reference). The model has 47 150 degrees
of freedom. The prognostic variables are vorticity, di-
vergence, temperature, and surface pressure. Except for
a minor modification to the forcing, described below,
the model is essentially equivalent to the model of Held
and Suarez (1994).

The experiment is conducted under perfect-model as-
sumptions; that is, the same forecast model is used both
to generate a synthetic true state and the ensemble fore-
casts. To generate a time series of the true state, we
started with a random perturbation superimposed upon
a resting state. The model was then integrated for 280
days. The first 100 days were discarded, and the re-
maining 180 days taken as the time series of the true
state used in this experiment. Hereafter, day 100 is con-
sidered the starting point, the day 0 for all further ex-
periments.

As described in Hamill et al. (2002b), our initial ex-
periments with this model using the classic Held and
Suarez (1994) forcing frequently produced low-quality
analyses in the tropical upper troposphere. After much
examination, we concluded that the root cause was
small-scale wave motions excited under adiabatic or su-
peradiabatic conditions. We tested the use of linear ver-
tical diffusion to control this noise, but this was largely
ineffective. As noted by Bénard et al. (2000), nonlinear
vertical diffusion schemes are preferable but must be
coded very carefully to ensure stability. We decided as
an alternative to modify the radiative equilibrium state
to which temperature is relaxed, making it slightly more
stable in the tropical upper troposphere. The classic Held
and Suarez equilibrium state is defined by

2T 5 max 200K, 315K 2 (DT ) sin feq y5 [
kp p

22 (Du) log cos f , (1)z 1 2 1 2 6]p p0 0

where (DT)y 5 60 K, f is the latitude, (Du)z 5 10 K,
p0 5 1000 hPa, k 5 R/cp 5 2/7, and cp 5 1004 J kg21

K21. Our modified Held–Suarez forcing is of the form

2T 5 max 200K, 315K 2 (DT ) sin feq y5 [
kp p

22 (Du) log (1 1 cos f) .z 1 2 1 2 6]p p0 0

(2)

The change in the equilibrium state between the two is
illustrated in Fig. 1.

b. Ensemble data assimilation methodology

The assimilation scheme used here has been named
the ensemble square root filter (EnSRF). A complete
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FIG. 1. (a) Classic Held–Suarez potential temperature profile; (b)
modified Held–Suarez potential temperature profile (with more stable
tropical troposphere) used here. Temperature in K. Contours are not
plotted above 410 K.

description of it and the rationale for its use is provided
in Whitaker and Hamill (2002). The underlying prin-
ciple is to run an ensemble of parallel forecast and data
assimilation cycles, ensuring that the ensemble mean
analysis and the analysis-error covariance as estimated
by the ensemble are consistent with that predicted by
Kalman filter theory.

We follow the notational convention of Ide et al.
(1997). Let xb be a background model forecast, yo be a
set of observations, and H be an operator that converts
the model state to the observation space, here assumed
linear. Let Pb be the background-error covariance matrix
and R be the observational-error covariance matrix. The
minimum error variance estimate of the analyzed state

xa is then given by the traditional Kalman filter update
equation (Lorenc 1986)

a b o bx 5 x 1 K(y 2 Hx ), (3)

where

21b T b TK 5 P H (HP H 1 R) . (4)

The expected analysis-error covariance is

a bP 5 (I 2 KH)P . (5)

In the standard ensemble Kalman filter (EnKF; Evensen
1994; Houtekamer and Mitchell 1998; Burgers et al.
1998; Hamill et al. 2001), parallel data assimilation cy-
cles are conducted, each cycle updating a member back-
ground forecast to a set of perturbed observations per-
turbed with noise consistent with observational errors.
Here, Pb is approximated using the sample covariance
from an ensemble of model forecasts; Pb 5 ^x9bx9bT&,
where primes denote the deviation from the ensemble
mean and ^ · & denotes the expected value, here com-
puted from the ensemble. In actuality, there is no need
to compute and store the full matrix Pb. Instead, matrices
PbHT and HPbHT are estimated directly using the en-
semble (Evensen 1994; Houtekamer and Mitchell 1998).

The EnSRF operates similarly, conducting a set of
parallel data assimilation cycles. It is convenient in the
EnSRF to update the equations for the ensemble mean
(denoted by an overbar) and the deviation from the mean
separately:

a bb ox 5 x 1 K(y 2 Hx ), (6)
a b˜x9 5 (I 2 KH)x9 . (7)i i

Here, K is the traditional Kalman gain given by Eq. (4),
and K̃ is the ‘‘reduced’’ gain used to update deviations
from the ensemble mean.

When sequentially processing independent observa-
tions, K, K̃, HPb and PbHT are all vectors with the same
number of elements as the model state vector, and HPbHT

and R are scalars. Thus, when observations are pro-
cessed one at a time,

21R
K̃ 5 1 1 K. (8)

b T1 2!HP H 1 R

The quantity multiplying K in Eq. (8) is thus a scalar
between 0 and 1. This means that, in order to obtain
the desired analysis-error covariance, one updates de-
viations from the ensemble mean using a modified Kal-
man gain that is reduced in magnitude relative to the
traditional Kalman gain. Thus, deviations from the mean
are reduced less in the analysis using K̃ than they would
be using K. In the EnKF, the excess variance reduction
caused by using K to update deviations from the mean
is compensated for by the introduction of noise to the
observations. In the EnSRF, the mean and departures
from the mean are updated independently according to
Eqs. (6) and (7). If observations are processed one at a
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time, the EnSRF requires about the same computation
as the traditional EnKF with perturbed observations.

The general analysis methodology is thus as follows.
Generate a set of perturbed initial conditions. Make n
forecasts forward to the next data assimilation time.
Perform n 1 1 parallel data assimilation cycles, up-
dating the mean state using Eqs. (6) and (4) and the n
perturbations using Eqs. (7) and (8). Repeat the process.
In each data assimilation cycle, observations are assim-
ilated serially.

Some additional algorithmic complexity will be used
in order to model background-error covariances more
accurately. These include the inflation and localization
of covariances. Deviations of perturbations of each
member from the ensemble mean are inflated by a small
amount before the start of each data assimilation cycle
in order to ensure that covariances are not systematically
underestimated. Such underestimation can cause a prob-
lem known as filter divergence, whereby the influence
of new observations is ignored. Covariance localization
multiplies the ensemble estimate of covariances with an
isotropic function that monotonically decreases with
greater distance from the observation. See Hamill et al.
(2001) and references therein for an in-depth rationale
and mathematical formalism.

3. Approximate singular vectors generated from
ensembles

a. Analysis-error covariance singular vectors

Before describing how the leading AEC SVs can be
approximated given an ensemble of analyses from the
EnSRF, we first briefly review the definition and some
properties of the AEC SVs. We use the following no-
tational conventions. Here, S denotes a symmetric, non-
negative matrix defining a norm for the forecast errors
by | x | 2 5 xTSx. In what follows, we will define | · |
to be the total energy norm and write S 5 DTD, where
D is a matrix that transforms and scales the state vector
so that (Dx)TDx is the total energy of x. We will use M
5 M(t1, t2) to denote the resolvent of the tangent linear
dynamics over the interval [t1, t2] (i.e., M maps suffi-
ciently small analysis error at t 5 t1 onto forecast errors
at t 5 t2).

To find the analysis-error covariance singular vectors,
we would like to maximize the forecast perturbation x9 f ,
measured in a total-energy norm, subject to the con-
straint that the initial perturbations x9a are sized to be
consistent with the analysis-error statistics, that is,

T Tf f a aTx9 Sx9 x9 M SMx9
max or max .T Ta a a aa21 a21x9 P x9 x9 P x9

The normalization in the denominator ensures that the
size and structure of x9a are consistent with those of a
perturbation drawn from a normal distribution with zero
mean and covariance Pa. Thus, when the denominator
is large, the error is unlikely. By Rayleigh’s principle,

these AEC SVs are also a solution to the generalized
eigenvalue problem

T a21M SMu 5 lP u, (9)

where u denotes an eigenvector and l the associated
eigenvalue (also see Barkmeijer et al. 1998).

The significance of the solutions u in Eq. (9) can be
seen by defining v 5 DMu. Multiplying Eq. (9) on the
left by DMPa and recalling that S 5 DDT then yields

T TaDMP M D v 5 lv. (10)

The forecast error covariance at the optimization time
is Pf 5 ^x9fx9 &. If analysis errors evolve linearly, thenTf

Pf 5 MPaMT and Eq. (10) becomes
TfDP D v 5 lv. (11)

Thus, the solutions v of Eq. (10) are the eigenvectors
of the forecast-error covariance matrix (after transform-
ing and scaling the state with D), and u in Eq. (9) is
the initial error that evolves to produce v, via v 5 DMu.
We will refer to u as the initial-time AEC SV, since it
corresponds to an error in the analysis, and to v as the
evolved or forecast AEC SV, since it corresponds to the
forecast error produced by the analysis error u.

Now, we wish to approximate the leading AEC SVs
using an ensemble of analyses at t 5 t1 from the EnSRF
and an ensemble of forecasts to t 5 t2 from those anal-
yses. Let Xa 5 (n 2 1)21/2 [ 2 a, . . . , 2 a],a ax x x x1 n

where the ith column vector represents the ith member
’s analyzed model state deviation from the ensembleaxi

mean analysis a. Similarly, let Xf 5 (n 2 1)21/2[ 2fx x1
f , . . . , 2 f ], where is the forecast from basedf f ax x x x xn i i

on the full (nonlinear) forecast model. In order to ap-
proximate the AEC SVs, the ensemble to be used must
satisfy

T a T flim X X 5 P and lim X X 5 P ; (12)a a f f
n→` n→`

that is, the sample covariance matrices based on the
analysis and forecast ensembles must approximate Pa

and Pf , respectively, for sufficiently large ensembles.
The forecast AEC SVs can be approximated by the

solutions of
TDX (DX ) v 5 lv,f f (13)

This is because, given the second condition in Eq. (12),
Eqs. (11) and (13) become identical for large n. We
compute solutions of Eq. (13) by representing v as a
linear combination of the n forecast deviations, that is,

v 5 DX a.f (14)

Substituting for v in Eq. (13) and eliminating a factor
of DXf from each side, we obtain an equivalent (for l
± 0) but smaller n 3 n eigenproblem,

T T(DX ) DX a 5 X SX a 5 la,f f f f (15)

whose solutions can be found by conventional numerical
techniques. Alternatively, one may compute v as the left
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singular vectors in a singular value decomposition
(SVD) of DXf . We have found negligible differences in
the resulting numerical solutions.

To approximate the initial-time AEC SVs, we need a
similar approximation to the solutions u of Eq. (9). This
requires the assumption that the forecast-error evolution
is approximately linear; in that case, Xf 5 MXa and Eq.
(15) becomes

TTX M SMX a 5 la.a a (16)

Multiplying by Xa and setting u 5 Xaa then gives, for
large n,

T Ta aP M SMX a 5 P M SMu 5 lu,a (17)

which is identical to Eq. (9). Note that the leading ei-
genvectors a of Eq. (15) provide both an approximate
initial AEC SV, through u 5 Xaa, and an approximate
evolved AEC SV, through v 5 DXf a, which is exactly
Eq. (14).

Hence, our overall algorithm for computing the sin-
gular vectors from a large ensemble is as follows. Equa-
tion (15) is first solved to yield the appropriate linear
combination a. The initial-time singular vectors are then
readily computed as u 5 Xaa, and the approximate
evolved AEC SVs from v 5 DXf a. These singular vec-
tors are approximations to the true singular vectors that
can only be obtained if the error dynamics is truly linear
and if the ensemble size is infinite. In section 6 we will
provide some evidence that linear dynamics can appro-
priately be assumed and that the singular vector struc-
ture from ensembles larger than the n 5 400 used here
should not change much.

b. Total-energy singular vectors

The technique for generating approximate TE SVs is
very similar to that used to generate AEC SVs, differing
only in the method of constructing the initial ensemble.
For AEC SVs, the initial ensemble represented random
samples of analysis error; for TE SVs, the initial en-
semble consists of the mean analysis state plus very
small random perturbations that are designed to be white
in a total-energy norm. See also Hamill et al. (2000) for
a similar computation in a quasigeostrophic model.

Let (u, v, T, Ps)T denote a vector of wind, temperature,
and surface pressure perturbations to the mean analysis
state. We would like to generate perturbations that are
white in total energy (have equal energy in all resolved
scales) and that have a small fraction of the energy of
the basic state so that perturbations will evolve linearly.
Following Ehrendorfer and Errico (1995), the total en-
ergy of the perturbation is defined as

21 c1 pp s2 2 2u 1 y 1 T 1 R T ds dEE E d r1 2[ ]!2 T pr rE 0

\ · \ 5 ,
1

ds dEE E
E 0

(18)

where E indicates the horizontal domain, s is the ver-
tical coordinate, Tr is a reference temperature (here, 300
K), Rd is the gas constant for dry air (287 J K21 kg21),
cp is the specific heat of dry air at constant pressure
(1004 J K21 kg21), ps is the surface pressure, and pr is
a reference pressure (1000 hPa).

Suppose we want to generate a random perturbation
that is white in total energy. Our model is spectral, with
a state vector consisting of vorticity, divergence, tem-
perature, and surface pressure. Accordingly, let Vmnl,
Dmnl, Tmnl, and Pmn be perturbations to the vorticity,
divergence, temperature, and pressure, respectively.
Here, m indicates the zonal wavenumber (0–31), n the
degree of the spherical harmonic, and l the model level.
Similar to Boer and Shepherd (1983), the total energy
for our T31L15 model can be expressed as

\ · \ 5 Kte

31 31 151
5 (a V V* 1 a D D*O O O n mnl mnl n mnl mnl[2 m5231 n5|m | l51

1 bT T* ) 1 gP P* , (19)mnl mnl mn mn]
where * denotes the complex conjugate, and coefficients
an, b, and g are defined as

2 cr R Tpe d ra 5 , b 5 , and g 5 ,n 2n(n 1 1) T pr r

where re is the radius of the earth. To generate spectral
perturbations that are small and white in total energy,
we do as follows. 1) For each spectral component at
each model level, generate independent random normal
deviates for the real and imaginary components of y mnl,
dmnl, tmnl, and pmn. 2) Scale the random normal deviates
to generate perturbations to the state component.

Let

21/2 21/2V 5 k a y , D 5 k k a d ,mnl 1 n mnl mnl 1 2 n mnl

21/2 21/2T 5 k b t , and P 5 k g p .mnl 1 mnl mn 1 mn

Here, k1 is a constant chosen so that the typical mag-
nitude of the perturbation sums to Kte, and k2 is a ratio
of the magnitude of divergence to vorticity perturbation
size (here k2 5 0.2; note that this decreases the divergent
component of the wind, but because temperature and
vorticity perturbations are generated independently, the
initial perturbations are still largely unbalanced).

The overall methodology for calculating TE SVs at
a particular time is as follows. First, calculate the en-
semble mean of the EnSRF analyses. Next, generate an
ensemble of perturbations that are white in total energy
as described above. Add the perturbations to the mean
analysis state, forming the ensemble of perturbed initial
conditions. Integrate this ensemble forward 48 h using
the fully nonlinear model. The methodology then fol-
lows for the AEC SVs: the linear combination of en-
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FIG. 2. Locations of synthetic rawinsonde profiles.

semble forecasts is found that results in the largest var-
iance in total energy, and that same linear combination
is applied to the initial ensemble to determine the lead-
ing initial-time TE SV.

Because the perturbations have a flat energy spec-
trum, a much larger ensemble of perturbations is needed
to generate TE SV perturbations that grow rapidly. Even
with a large ensemble, the initial structures are still
much noisier than they are for the AEC SVs. See section
6a for details.

4. Experimental design

Our experiment was conducted over an 180-day pe-
riod and used a 400-member EnSRF data assimilation
system as described in section 2b. In this implementa-
tion of the EnSRF, covariances were localized using a
Schur product of ensemble covariances with an ap-
proximately Gaussian-shaped function with local sup-
port (Gaspari and Cohn 1999) reaching a zero value at
7000-km distance from the observation. Before each
data assimilation cycle, covariances were inflated by
0.3%.

Synthetic rawinsondes (raobs) were assimilated every
12 h. The observations consisted of a surface pressure
measurement and winds and temperatures at seven of
the sigma levels, located approximately at 900, 766,
633, 500, 366, 233, and 100 hPa. Observations had error
characteristics derived from Parrish and Derber (1992);
wind errors were assumed to have a standard deviation
of 1.73, 2.18, 2.7, 2.8, 3.2, 3.0, and 2.5 m s21, respec-
tively, at the seven levels, and temperature standard de-
viations of 1.6, 1.4, 1.3, 1.3, 1.9, 2.5, and 3.1 K. Ob-
servation errors were assumed uncorrelated in the ver-
tical. Observation locations are shown in Fig. 2; they
were chosen to provide a crude analog to the operational
raob network, with more observations over the ‘‘land’’
than the ‘‘ocean.’’

In order to examine the structure of AEC SVs, we
periodically made an ensemble of 400 48-h forecasts
from the 400 analyses. The first of these forecasts were

conducted from the analyses on day 17.5, and another
sample was generated every 5 days thereafter, yielding
a total of 33 cases. The AEC SVs were computed using
Northern Hemisphere ensemble forecast data north of
208N, and the set of evolved singular vectors was con-
structed to be orthogonal in the total-energy norm using
the methodology outlined in section 3. The evolved sin-
gular values and singular vectors were ordered from
largest to smallest. To determine the associated initial-
time structure, the linear combination of ensemble fore-
cast members that produced a given evolved singular
vector is used, but applied to the initial-time ensemble.
Under linearity assumptions, this should produce the
correct initial-time structure. The extent to which this
assumption is valid will be examined in section 6.

The method for generating approximate TE SVs was
similar. A 1600-member ensemble of small initial per-
turbations that were white in energy was constructed
and added to the mean analysis, followed by 1600 48-
h forecasts.

5. Analysis error characteristics

Before examining the structure of the AEC SVs and
TE SVs, we first document the characteristics of analysis
errors, which are crucial in determining the AEC SV
structure. A time series of the domain-average ensemble
mean analysis error is shown in Fig. 3. Errors decreased
quickly to a very low value, punctuated by occasional
spikes of somewhat higher error. Figures 4a,b show a
zonal-mean cross section of the Northern Hemisphere
ensemble mean analysis error. Wind errors were largest
at the tropopause, with distinct maxima at three loca-
tions: near the equator, in the midlatitude jet core, and
near the North Pole. The former was primarily due to
small-scale wave motions generated when the atmo-
sphere is adiabatic or superadiabatic; this maximum
would have been substantially larger without the use of
the modified Held–Suarez forcing discussed in section
2a. The maximum in the midlatitudes was due to rapid
error growth associated with the jet, and the maximum
at the pole was due to a lack of observations. Temper-
ature errors had a less complex structure, with a tro-
pospheric maximum near the pole and a minimum in
the tropical lower troposphere. Though we will focus
on the Northern Hemisphere hereafter, where errors
were very small, we note that the errors were generally
much larger in the Southern Hemisphere, where the ob-
servational network was more sparse (Fig. 5).

A desirable property of an ensemble data assimilation
system is that one should be able to consider the analyses
and the true state as random samples from the same prob-
ability distribution. This can be evaluated with rank his-
tograms (Hamill 2001, and references therein). Figure 6
shows selected rank histograms for several analysis var-
iables. With the exception of temperatures in the tropical
upper troposphere, the predominant characteristic of the
analyses was a slight excess of spread in the ensembles,
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FIG. 3. Time series of errors of ensemble mean analysis from ensemble square root filter.
Errors are expressed in a total-energy norm integrated over the domain.

FIG. 4. Time- and zonally averaged ensemble mean absolute anal-
ysis error taken from samples between days 35 and 180: (a) wind
error and (b) temperature error.

manifested in a convex shape to the histograms. The
apparent bias of tropical upper-tropospheric temperatures
was initially a major concern, suggesting a problem such
as filter divergence. However, as shown in Fig. 4, the
ensemble mean temperature analysis error in the Tropics
was exceedingly small. A map of zonally and temporally
averaged temperature bias is presented in Fig. 7. The bias
was also uniformly small; at 300 hPa in the Tropics, the
bias was ;0.10 K. Since the analysis error of tempera-
tures was typically about 0.2 K or less in the Tropics
(Fig. 4), this tiny bias had a large effect on the rank
histograms. Since our concern will be primarily in the
Northern Hemisphere midlatitudes where rank histo-
grams were generally more uniform, we conclude that
the ensemble should generally be useful for providing
random samples of analysis error.

These results are broadly consistent with those of
results of Mitchell et al. (2002), who conducted exper-
iments in a similar model with a similar data assimi-
lation scheme.

6. Results

a. Characteristics of singular vectors

We first consider the growth rate of the ordered AEC
SVs, shown in Fig. 8a. Averaged over many cases, the
energy of the leading singular vector grew by a factor
of slightly less that 4 during the 48-h forecast. Since
energy is a squared quantity, this implies that pertur-
bations approximately doubled in size during the 48 h.
Though this growth rate may seem small, the error dou-
bling time for this model at this resolution is around 4
days (higher-resolution versions of this model have fast-
er, more realistic error doubling times). Thus, the lead-
ing singular vector grew approximately twice as fast as
the leading Lyapunov vector (Legras and Vautard 1996).

In this analysis, the singular vectors were ordered by
the amount of forecast error variance that they explain.
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FIG. 5. Map of time-averaged ensemble mean error in energy norm at 500 hPa.
Locations of raobs are overplotted.

FIG. 6. Rank histograms of analysis errors. Rank histograms were generated using a subsample
of 25 of the 400 ensemble members. Northern Hemisphere rank histograms used samples at
every grid point between 308 and 658N latitude and every 158 longitude. Tropical rank histograms
used samples between 158N and 158S latitude, and Southern Hemisphere samples between 308
and 658S latitude.

This does not imply that the leading AEC SV was nec-
essarily associated with the fastest growing structure.
The largest forecast error could have been due to rapid
error growth, but it may also have been due to the initial
analysis structure having relatively large errors in that
direction in phase space. Such a contingency is illus-
trated by Fig. 8b, showing the growth rates for an in-
dividual case (day 132.5). Here, singular vector 3 grew
faster than both singular vectors 1 and 2.

The TE SVs grew faster on average than AEC SVs,
and there were more growing directions (Fig. 8c). This
is broadly consistent with the results of Barkmeijer et
al. (1998, 1999), who found that their TE SVs grew
much faster than the Hessian SVs. Note that it is quite
likely that with a larger ensemble, yet faster growth of
the TE SVs would be possible. When the amplification
of the leading singular vector was calculated from a
100-member ensemble, this was approximately 1.7; for

a 400-member ensemble, approximately 4.3; and as
shown for the 1600-member ensemble, approximately
8.5. Still, the 1600 members were enough to verify that
the features of these TE SVs were consistent with those
observed in prior studies, as will be documented below.

Consider the average vertical structure of the leading
singular vector. Figures 9a,b illustrate the zonal-mean
structure of the leading AEC SV for the initial time and
evolved (48 h). Amplitudes at both times were maxi-
mized in midlatitudes near the tropopause, with a sec-
ondary maximum near the poles, where the analysis
errors were consistently large due to lack of data. There
was also a secondary maximum in midlatitudes near the
surface. The structure was qualitatively unlike that of
TE SVs, shown in Figs. 9c,d. Consistent with previous
studies (e.g., Buizza and Palmer 1995), the TE SVs
started with a maximum initial amplitude in the mid-
troposphere. The initial structures of these TE SVs were
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FIG. 7. Zonal average of bias of the ensemble mean analysis.
Average was taken from days 35 to 180.

FIG. 8. (a) Growth rate (in total energy) over 48-h optimization
period of AEC SVs as a function of singular vector number. Solid
line denotes average over 33 cases, dashed lines the min and max
from the 33 cases. (b) Example of an individual case where growth
rates of AEC SV do not monotonically decrease with increasing sin-
gular vector number. (c) As in (a), but for TE SVs.

not as well defined in this model as they were for ex-
periments where the singular vectors were calculated
using the linear tangent and adjoint; the leading singular
vector contains both the relevant growing dynamical
structure (e.g., Figs. 10, 11) and spurious noise (hence
the red color throughout the plot in Fig. 9c).

The growth of various components of the AEC SVs
was also examined. In terms of individual wind compo-
nents (not shown), the AEC SVs at both initial and evolved
times were dominated by the meridional wind component,
with much less amplitude in the zonal wind and temper-
ature components. Temperature perturbations were found
to grow primarily near the lower boundary, with less
growth aloft. The initial-time TE SV temperature pertur-
bations were much larger than the wind perturbations, were
tilted upshear, and were maximized in the lower to mid-
troposphere (Fig. 10a), consistent with prior TE SV stud-
ies. Evolved TE SVs had larger-amplitude perturbations
in wind than in temperature, and were deeper (Fig. 10b)
and larger in scale (Fig. 11), again consistent with prior
studies such as Barkmeijer et al. (1999).

The typical horizontal structure was also unlike the
structure of TE SVs. The power spectrum of the leading
singular vector (Fig. 12) shows that power was peaked
around wavenumber 8 for both the initial-time and the
evolved AEC SVs. The growth rate of the perturbations
was roughly similar at all scales up to wavenumber 25.
This, again, was dramatically different than the TE SVs
(Fig. 12 again), which initially have a larger fraction of
their power at smaller scales but evolve to have a ma-
jority of the power at larger scales. This is consistent
again with Buizza and Palmer (1995) and Barkmeijer
et al. (1999, their Fig. 1).

Figures 13a,b show one case day’s AEC SV structure
at 300 hPa at the initial and evolved times. The AEC
SVs were synoptic in scale and had significant projec-
tions at most longitudes. The TE SVs in our model (e.g.,
Fig. 11) and those documented in prior studies were

much more localized. Our first thought was that the
nonlocality of the AEC SVs might have been a result
of the insufficient ensemble size; perhaps 400 members
was not enough to converge to a correct, more localized
structure. However, visual comparisons of the leading
AEC SV from 25- and 100-member ensembles suggest
that the global nature of the singular vector does not
appear to decrease with increasing sample size (Fig. 14).
Perhaps the global structure could be an artifact of the
simplicity of the forecast model, which does not have
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FIG. 9. Zonal-mean profile of energy of the leading AEC SV averaged over the 33 cases: (a) initial time
and (b) 48-h evolved; units are m2 s22 (c), (d) As in (a), (b) but for 48-h evolved TE SV; amplitudes are
nondimensional energy; (c) chosen to be normalized by the maximum initial-time amplitude and (d) by the
maximum final-time amplitude.

land–water interfaces or terrain features to regionalize
areas of preferred cyclogenesis.

The evidence provided here suggests that the structure
of flow-dependent AEC SVs is markedly different than
that of TE SVs. Does this make AEC SVs a better basis
for ensemble forecasting applications? Perhaps so, at
least for shorter-range ensemble forecasts. Figure 15
provides a comparison of the projection of the error of
the 48-h ensemble mean forecast onto the subspace of
the leading 48-h forecast TE and AEC SVs for each of
the 33 cases. As shown, the projection into the subspace
of the AEC SVs is typically larger than into the subspace
of TE SVs, suggesting that they are a more appropriate
basis. A suggestion of why this may be so can be seen
from a re-examination of Figs. 9b,d. The structure of

the leading forecast AEC SV has significant amplitude
near the poles, while this is missing in the leading TE
SV. Recall that a large forecast error can result from
either rapid growth of initially small errors or the per-
sistence of large errors from the analysis. Error struc-
tures caused by this latter effect are naturally captured
by AEC SVs and missed by TE SVs. Presumably, the
more spatially homogeneous and spectrally white the
initial errors, the greater the similarity of forecast AEC
SVs and TE SV structures.

b. Sampling and linearity issues

We have not yet examined some of the underlying
assumptions for creating these AEC SVs. There were
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FIG. 10. Cross section of the temperature perturbation structure of the leading TE SV initialized
on day 32.5. Cross section is along ;42.58N latitude. Perturbations are normalized by the mag-
nitude of the largest forecast perturbation. Red perturbations are positive, blue are negative: (a)
initial-time TE SV temperature perturbation; (b) 48-h evolved.

several possible sources for error in the computation of
these AEC SVs. First, though the ensemble size was
large, perhaps the singular vector structure would have
been significantly different if the ensemble size were
infinite. Second, we assume that errors grew linearly
during the forecast. We would like to examine the va-
lidity of each of these assumptions.

On each of the case days, we have examined the
structure of the leading AEC SV for ensembles of size
25, 100, and 400. It was clear that the structure of in-
dividual singular vectors was not fully converged with
400 members. However, of greater consequence for en-
semble forecasting is the question of whether the leading
singular vectors of small and larger ensembles span the
same subspace. If they do, that subspace is converged,
and adding additional ensemble members is not re-
quired. This aspect can be examined here by calculating
how strongly the singular vectors of 25- or 100-member
ensemble project onto the subspace of the leading SVs
of the full 400-member ensemble, as done in Fig. 16.
Such calculations were also demonstrated in Buizza
(1994) and Hamill et al. (2000). The leading 25 initial-
time singular vectors from the ensembles of size 25 and
100 projected moderately onto the subspace of the lead-
ing 25 singular vectors from the 400-member ensemble
(Fig. 16a). The projection was much stronger for the
evolved singular vectors (Fig. 16b), where for the first
10 singular vectors of the 100-member ensemble, the

projection was greater than 95%. This suggests that
there was noisiness in the initial-time AEC SVs that
was somewhat irrelevant to the evolved structure, given
a long-enough optimization time. This also indicates
that a larger ensemble is required to represent analysis
errors than to represent forecast errors (see also Hamill
et al. 2002a). Barkmeijer et al. (1998, 1999) and others
have previously noted that the evolved structure of en-
sembles tends to be very similar even when the initial
ensembles are started from quite different structures.
This similarity is a result of the attraction of all per-
turbations to the lower-dimensional strange attractor,
which occurs on a timescale of 1–3 days (Snyder et al.
2003).

We examined the issue of linearity using the meth-
odology outlined in Gilmour et al. (2001). They denote
a nonlinearity index Q as

1 2\d (t) 1 d (t)\
Q 5 . (20)

1 20.5{\d (t)\ 1 \d (t)\}

Here \ · \ denotes a total energy norm north of 208N,
d1(t) denotes a positive perturbation, and d2(t) is a neg-
ative perturbation. When growth is linear, Q 5 0. To
calculate Q here, forecasts were integrated to 48 h from
two perturbed initial conditions about the ensemble
mean, one in the direction of the leading singular vector,
the other its negative pair. Averaged over the 33 cases,
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FIG. 11. Leading TE SV perturbations (colors) initialized on day 32.5: (a) initial-time 700-hPa
temperature (solid lines, contours every 5 K) and perturbations (normalized by the magnitude of
the largest evolved perturbation); (b) 48-h 700-hPa temperature and evolved perturbations (same
normalization); (c) 48-h 300-hPa streamfunction and evolved perturbations (normalized by the
magnitude of the largest evolved streamfunction perturbation). Red perturbations are positive,
blue are negative.

Q was very small, typically ;0.02. Of course, as noted
above, for a given model Q will depend upon the size
of the perturbation and the length of the forecast. Here,
the nonlinearity was small both because the initial per-
turbations were very small and the timescale of the fore-
cast was relatively short compared to the error-doubling
time. These results are thus not generalizable to different
forecast models with faster error growth rates and larger
initial condition errors.

7. Discussion and conclusions

We have examined the structure of flow-dependent
analysis-error covariance singular vectors (AEC SVs)
from a simple general circulation model using an en-
semble-based data assimilation system. This was done

in order to understand the characteristics of singular
vectors when their initial structure was constrained to
be consistent with analysis error statistics. Further, this
study demonstrates that the AEC SVs may be funda-
mentally different in structure than singular vectors us-
ing a total-energy initial norm. The structure of these
singular vectors has important implications for how to
generate dynamically constrained perturbations for en-
semble forecasts.

In our experiments, a T31 L15 dry general circulation
model (GCM) was used under perfect-model assump-
tions. Sets of 400-member ensembles of analyses were
generated by an ensemble square root filter data assim-
ilation system assimilating a sparse network of synthetic
radiosonde observations. Ensembles of 48-h forecasts
were also generated from these analyses. The evolved



1754 VOLUME 131M O N T H L Y W E A T H E R R E V I E W

FIG. 12. Time- and latitudinally averaged power spectrum of zonal
component of total energy for the leading singular vectors. Average
is over 33 cases and latitudes from 358 to 558N latitude: power spec-
trum at (a) 300 and (b) 900 hPa.

singular vectors were determined by finding the linear
combination of the forecast ensemble members that re-
sulted in the largest forecast-error variance, here mea-
sured as a total-energy norm north of 208N latitude. The
same linear combination of analyses specified the initial-
time structure that should evolve to the forecast singular
vector under assumptions of linearity of error growth.
A similar procedure was used to generate approximate
total-energy singular vectors (TE SVs).

In this simplified GCM, the typical structure of initial-
time TE SVs was significantly different than the struc-
ture of corresponding AEC SVs. The AEC SVs had
maximum amplitude in midlatitudes near the tropo-
pause, both at the initial and evolved times; the initial
structure was very similar to the subsequent forecast
error structure but smaller in magnitude. The AEC SVs
were synoptic in scale and did not appear to be geo-
graphically localized. This contrasts with TE SVs,
which started off much smaller in scale and had am-
plitudes that were typically largest in the lower to mid-
troposphere. The TE SVs grew very rapidly and
changed in structure during the forecast, so that their

evolved structure was rather similar to that of the
evolved AEC SVs.

The structure of the AEC SVs shown here is generally
consistent with the structure of Hessian singular vectors
(HSVs) of Barkmeijer et al. (1998, 1999). For the HSVs,
the initial norm is based on the Hessian of the cost
function in a 3D-Var assimilation scheme; that Hessian
matrix, in turn, is equal to the inverse of the analysis-
error covariances that would be obtained if the back-
ground forecast error covariances assumed in 3D-Var
were correct. Although the background-error covari-
ances used in the HSVs are not flow dependent, the
estimate of the analysis-error covariances provided by
the Hessian is based on reasonable time-averaged es-
timates of the background-error covariances and a de-
tailed accounting of the locations and accuracies of the
available observations. Agreement of AEC SVs here
with HSVs of Barkmeijer et al. further supports the
relevance of our results to more complex and realistic
NWP systems.

The structure of the AEC SVs is also consistent with
estimates of analysis-error statistics in a quasigeostroph-
ic model (Hamill et al. 2002a). In that model, the anal-
ysis errors share many of the characteristics of the AEC
SVs calculated here: they are largest in the upper tro-
posphere and are smallest in the lower to midtropos-
phere, they are synoptic in scale, and they are deep
structures with weak vertical tilts. These properties of
the analysis error in the quasigeostrophic model arise
because of the rapid dynamical conditioning of errors
during the forecast (Snyder et al. 2003) and because the
analysis errors keep much of the character of the back-
ground errors, despite the effects of the assimilation
process (Hamill et al. 2002a).

Perhaps with a more complex model than used in this
experiment or with a change in experimental design
(e.g., use of imperfect forecast models with moist ther-
modynamics) these inconsistencies of AEC SV and TE
SV structures might change somewhat; this experiment
used a low-resolution GCM under perfect-model as-
sumptions. Nonetheless, there is clearly other evidence
to support the relevance of our results. Conversely, there
is little research to support the assertion that the struc-
tures of initial-time TE SVs are similar to those of AEC
SVs.

What are the operational implications of this re-
search? To the extent that analysis errors in our sim-
plified model resemble those in global numerical weath-
er prediction models, the difference in structure between
these AEC SVs and ECMWF’s TE SVs suggests that
their operational ensemble forecasts could be improved
from the change, were this computation practical. The
choice of initial norm is likely to be especially important
for short-range ensemble forecasts (SREFs). Because
TE SVs grow more rapidly than AEC SVs, TE SV initial
amplitudes are typically set below the magnitude of
analysis error; this way, after their rapid initial growth
they have a realistic magnitude (Molteni et al. 1996).
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FIG. 13. The 300-hPa AEC SV structure for (a) initial time (here, day 32.5) and (b) 48-h evolved
(here, day 34.5). Heavy solid lines denote streamfunction of true state at that time, and colored
lines denote the perturbation to streamfunction from the first singular vector. Contours of true
streamfunction are every 2. 3 107 m2 s21. Streamfunction perturbations are normalized by the
largest perturbation from the forecast, with contours at [20.9, 20.7, . . . , 0.7, 0.9]. Red pertur-
bations are positive, blue perturbations negative.

FIG. 14. (a) As in Fig. 13b, but from a 100-member ensemble; (b) as in Fig. 10b, but from a
25-member ensemble.
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FIG. 15. Comparison of the projection of 48-h forecast error onto
subspace of leading AEC SVs and TE SVs. Each dot denotes an
individual forecast case (33 total). Squares denote the projection onto
subspace of leading 25 singular vectors, filled circles onto the leading
10 singular vectors.

FIG. 16. Projection of leading AEC SVs from 25- and 100-member
ensemble onto subspace of leading 25 AEC SVs from 400-member
ensemble, averaged over all 33 cases: (a) for the initial-time AEC
SVs; (b) for the evolved AEC SVs.

Further, their initial amplitudes are likely to be espe-
cially small near the surface and the tropopause, where
the initial TE SV amplitude is typically small relative
to AEC SV amplitude anyway. Consequently, SREFs
from TE SV initial conditions can be expected to be
unreliable at short lead times, having too little spread.

The calculation of AEC SVs in this study was facil-
itated by the existence of an ensemble-based data as-
similation system. None of the major operational weath-
er prediction facilities yet has such a data assimilation
system in place, and the relative accuracy of ensemble
data assimilation systems relative to 4D-Var is still un-
known. Yet there are reasons for the operational centers
to give serious consideration to these techniques. In this
paper, we showed that analysis errors can be reduced
to a remarkably low level with relatively few obser-
vations, albeit in a perfect-model simulation with a sim-
ple model. The key to this reduction was the flow-de-
pendent background-error covariances generated by the
ensemble filter, which produced a more optimal weight-
ing of the background relative to the observations. The
dramatically low errors demonstrated here do not seem
to be unusual, either: a growing body of contempora-
neous literature has also demonstrated the appeal of en-
semble filters for atmospheric, oceanic, and land surface
assimilation problems (Evensen 1994; Evensen and van
Leeuwen 1996; Burgers et al. 1998; Houtekamer and
Mitchell 1998, 2001; van Leeuwen 1999; Lermusiaux
and Robinson 1999; Anderson and Anderson 1999;
Hamill and Snyder 2000; Keppenne 2000; Mitchell and
Houtekamer 2000; Heemink et al. 2001; Hamill et al.

2001; Anderson 2001; Pham 2001; Whitaker and Hamill
2002; Reichle et al. 2002; Mitchell et al. 2002).

The appeal of ensemble filters may be greater yet if
one considers the improvements they may foster for
ancillary applications. Ensemble filters readily generate
sets of initial conditions for ensemble forecasts that are
automatically consistent with flow-dependent analysis-
error statistics. They may facilitate more accurate com-
putation of where adaptive observations are needed
(Hamill and Snyder 2002), for parameter estimation
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(e.g., Anderson 2001), and for computation of AEC
SVs, as demonstrated here.

An issue we have not addressed in this study is the
relative value of ensemble forecasts initialized with ran-
dom perturbations versus perturbations in the subspace
of the singular vectors. The framework outlined in this
paper provides a natural way of performing such tests,
and we hope to address this in our future work.
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